An Unfoldable Polyhedron

To unfold a polyhedron, cut it along some edges and flatten it out to form a net. (Allowing cuts on faces as well as edges is called a general unfolding.)
This Demonstration shows a "spiked tetrahedron" of Bern et al. [1]. It can only be unfolded with overlaps since one quarter of it (a "hat") can be unfolded only with overlaps.

DETAILS

In [2] a polyhedron that can be edge-unfolded only with overlaps, is called an unfoldable polyhedron. The proof of the unfoldability of the spiked tetrahedron can be found in [2].
References
[1] M. Bern, E. D. Demaine, D. Eppstein and E. Kuo, "Ununfoldable Polyhedra," in Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG'99), Vancouver, 1999 pp. 13-16. www.cccg.ca/proceedings/1999/fp38.pdf.
[2] E. D. Demaine and J. O'Rourke, Geometric Folding Algorithms: Linkages, Origami, Polyhedra, New York: Cambridge University Press, 2007, pp. 318–320.

PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.