Optically anisotropic dielectrics are birefringent if their index of refraction for a given wavelength depends on the polarization state and the propagation direction of the refracted wave. Ordered materials like crystals have three principal indices of refraction (specific to the crystal structure) in the directions known as the principal axes. Together these constitute the principal coordinate system. If all three indices are the same, the material is characterized as isotropic; if two are the same, as uniaxial; and if all three are different, as biaxial.
We focus on the second case (uniaxial), where the crystal has one axis of symmetry (as in the trigonal, tetragonal, and hexagonal crystal systems), known as the optical axis (
,
principal axis). In the index ellipsoid notation (optical indicatrix, electric impermeability surface), the index of refraction along the direction of the optical axis is known as extraordinary,
, and the two equal indices in directions perpendicular to the
are referred to as ordinary,
. Birefringence in an isotropicuniaxial interface for an incoming linearly polarized light wave is better seen as double refraction; the incoming wave splits into two refracted waves inside the uniaxial medium. Their propagation depends on their state of polarization.
In this Demonstration, the
is allowed to rotate not only on the plane of incidence (the

plane in the fixed laboratory frame) but also perpendicular to that plane (elevation, around the
axis). The coordinate system used for rotation is a fixed
,
,
laboratory system where the interface is the fixed

plane, the normal to the interface is the lab
axis, and the lab
axis is normal to the plane of incidence. The incidence plane is important since it contains all the wave vectors and the normal to the interface. The crystal is held fixed in space, with the crystal structure rotated. A transformation of coordinate systems has been taken into account in order to translate the crystal geometry from the principal coordinate system that rotates with the
to the fixed laboratory frame. The rotation transformation used always assumes that rotation in the plane of incidence (
) precedes the elevation angle
regardless of the order each slider was moved.
A key concept in birefringence is the
dispersion relation between energy
and momentum (
being the wave vector) of a wave. Maxwell's equations lead to a dispersion relation that can be visualized as a surface in
space, formally known as the normal surface or the
surface. In uniaxial crystals, the
surface consists of two sheets: a sphere for the
wave and an ellipsoid of revolution for the
wave. The intersection of the
surfaces with the plane of incidence (the

plane in this case) collapses the 3D constructions to a circle and an ellipse. Poynting vectors are normal to their corresponding
surface. In this Demonstration, the
ray Poynting vector
are found through the geometric construction of the normal to the ellipse at its intersection with the
wave vector.
The
wave's direction of propagation is found analytically using Snell's law with
as the corresponding index of refraction. Its polarization is perpendicular to the plane formed by the
and the
wave vector. The
wave's direction of propagation coincides with the corresponding energy flow (the direction of the Poynting vector or ray direction). The
refracted wave satisfies a modified version of Snell's law; the index of refraction the wave experiences depends not only on the values of
and
of the refracting medium but is also a function of the direction of propagation. Here, the extraordinary wave's direction of propagation is solved for numerically. Its polarization vector lies in the plane formed by
,
, and
(Poynting vector) and the equation of this plane is provided in the "data" section. The
waves have different directions for wave vectors and energy flow (walkoff angle,
, and
angle).
Assuming that the incoming wave's electric field has unit amplitude, then the reflected field will have
amplitude in the
pol. direction (
axis) and
amplitude in the
pol. direction (plane of incidence) while the
transmitted field will have
amplitude (in the direction defined by the cross product of the wave vector
and the
) and the
transmitted field will have
amplitude (on the plane formed by
,
, and
and normal to
). These four quantities are known as the Fresnel coefficients. We can then get the power ratios
,
,
, and
with the standard procedure (intensity ratios in a unit area). The
value is also calculated (sum of the four power ratios) and should always be 1, since it represents conservation of energy.
Fresnel coefficients are derived by explicit application of electromagnetic boundary conditions at the interface (continuity of the tangential components of the electric
and magnetic
fields). Both the Fresnel coefficients graphs and the reflectancetransmittance graphs are calculated by a looping construct that steps the incidence angle in increments specified by the user (the highest accuracy comes at a premium; a 0.01 step takes about 20 seconds to evaluate). The Brewster angle is then deduced by finding the minimum value of the
component of the reflected ray,
. The incoming wave is taken as linearly polarized and its polarization direction can be decided by the user between completely
polarized (
axis, normal to the plane of incidence, 0° in the corresponding slider) and completely
polarized (the

plane of incidence, 90° in the slider) in steps of one degree.
The EM boundary conditions at the interface require all wave vectors (
,
,
, and
) to be in the plane of incidence.
The first medium has a userdefined index of refraction (
) also. When properly chosen (with respect to
and
), total internal reflection (TIR) phenomena are explored and the corresponding critical angles (
and
) are identified from the data (when the corresponding refraction angles for the rays, not the wave vectors, become complex).
The Poynting vector
is computed by finding the intersection point
of
with the
surface and evaluating the normal to the surface there.
A brief description of the selection menu:
1. Raw data on wave, ray, and field directions; Fresnel coefficients; reflectance and transmittance.
2. The
surfaces of the ordinary and extraordinary waves inside the uniaxial medium (their intersection with the plane of incidence,

plane).
3. The corresponding directions of propagation and polarizations for the two wave vectors
and
and for the
ray/Poynting vector
. The
ray/Poynting vector coincides with the ordinary wave vector
. The polarizations refer to an
in the plane of incidence.
4. Fresnel coefficients
and
(absolute values). Changing the
orientation affects the shape of the observed curves, while changing the incoming wave's polarization has a profound effect on the magnitude of the coefficients.
5. Phase of the reflectance coefficients
and
defined as the argument of the coefficient. In the case of internal reflection, the phase can also take on values between 0 and
radians when the incoming wave's angle with the normal to the interface exceeds the critical angle and the coefficients become complex numbers.
6. Reflectance and transmittance
,
. Except for the strictly
polarized incident wave, the Brewster angle is found (changing the angular step has a direct impact on the accuracy). In the case of internal reflection, the critical angles (TIR angles) are also reported. Total reflectivity at normal incidence is also noted. The angular step provides a way to increase the accuracy of the reported values at the "expense" of longer evaluation times.
Snapshot 1: projection of the
and
surfaces (sphere and ellipsoid of revolution) in the plane of incidence. The two curves are tangent along the
for all rotation angles if there is no elevation.
Snapshots 2 and 3: airglass and glassair (isotropicisotropic) interfaces. Total internal reflection conditions are met in the second case for angles of incidence larger than about 41.5°.
Snapshot 4: aircalcite interface (
,
). Calcite exhibits large negative birefringence (
). The power curves look very similar to the ones in the airglass interface (Snapshot 2).
Snapshot 5: artificial isotropiccalcite interface (
,
). Check the sharp rise of the
component in the reflected ray in the angular interval between the two TIR angles although the incoming polarization is polarized at 45°. There are two TIR angles, one for each index of refraction.
Snapshot 6: again aircalcite interface (as in Snapshot 5) but this time the
is not rotated but elevated at 45° from the plane of incidence. Notice that in the region between the two TIR angles, the reflected ray rotates its polarization to almost 45° despite the incoming ray being only
polarized.
[1] B. E. A. Saleh and M. C. Teich,
Fundamentals of Photonics, 2nd ed., Hoboken, NJ: John Wiley & Sons Inc., 2007.
[2] M. Sluijter,
RayOptics Analysis of Homogeneous Uniaxially Anisotropic Media, Technical note TN200700025, Philips Research Eindhoven, 2007.
[3] M. Sluijter,
RayOptics Analysis of Inhomogeneous Uniaxially Anisotropic Media, Technical note TN200700892, Philips Research Eindhoven, 2008.
[4] Z. Zhang and H. J. Caulfield, "Reflection and Refraction by Interfaces of Uniaxial Crystals,"
Optics & Laser Technology,
28(7), 1996, pp. 549–553. doi:
10.1016/S00303992(96)000229.
[5] E. Hecht,
Optics, 4th ed., San Francisco, CA: Pearson Addison Wesley, 2002.