Chemical Reactions Described by the Lorenz Equations

This Demonstration analyzes the behavior of a chemical reaction scheme that is described by the Lorenz equations:
Parameters that lead to interesting behavior are ; the strange attractor that evolves from these equations spans both positive and negative values of and . If we interpret these symbols as representing concentrations of chemical species, they cannot be negative; a shift of the and axes can give new variables that are always positive [1]. Thus if we choose , , with , the equations describing the system become
where , , and represent concentrations of chemical species. Using the values for the constants given above, the equations are
The reactions required to give the Lorenz equations are shown in section (1.7) of [1]. You can vary the time and the initial values of the species to see the evolution of the system. There is an unstable steady state at and an unstable fixed point at .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] D. Poland, "Cooperative Catalysis and Chemical Chaos: A Chemical Model for the Lorenz Equations," Physica D 65(1–2), 1993 pp. 86–99. doi:10.1016/0167-2789(93)90006-M.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+