Circular and Elliptic Polarization of Light Waves

A superposition of two linearly polarized light waves with perpendicular polarization planes results in a linear, elliptical, or circular polarized wave, depending on the amplitudes and the phase shift between the two waves.
In the animation the electric field components of the two individual waves are shown in red and blue if "show components" is selected. The electric field component of the resulting superposition is shown in green. If the superimposed waves have equal amplitude and a phase shift of a quarter wavelength (), the resulting wave has circular polarization. This is the default setting for the animation. If the phase shift is not equal to , or if the waves have different amplitudes, the superposition wave has elliptic polarization. Adjust "amplitude ratio" or "phase shift" to see the effect. A "detector" at position traces the amplitude of the resulting wave and shows the polarization. The animation can be freely rotated. Select a phase shift of zero or to obtain a superposition wave with linear polarization.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+