11315

# Electromagnetic Field Energies in Capacitors and Inductors

A capacitor with square plates of width separated by a distance with a filler of dielectric constant (relative permittivity) has a capacitance given by . Typical values are in the range of picofarads (pF). A voltage can hold positive and negative charges on the plates of the capacitor while producing an internal electric field . Assuming idealized geometry, the energy of a charged capacitor equals . This energy can be considered to be stored in the electric field, which implies a corresponding energy density (with ).
Next consider an air-core inductor, again assuming idealized geometry. The relative permeability is approximated as 1. The inductance of a helical conducting coil, as shown in the graphic, is then given by , where is the number of turns. Typical values can be in the range of microhenries (H). Considered as a solenoid, the inductor produces a magnetic field , when carrying a current . The energy of the inductor equals , which implies a magnetic-field energy density .
Combining the above results gives the well-known formula for the energy density of an electromagnetic field in a vacuum: . This is valid for electric and magnetic fields from any sources, notably for electromagnetic radiation.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.