9716

Electronic Structure of 1D and 2D Quasiperiodic Systems

This Demonstration shows the electronic levels of 1D and 2D aperiodic systems compared with the related electronic density of states (DOS) and integrated DOS (IDOS). The latter are computed as histograms, counting the number of electronic levels in a given energy bin. The electronic structure is calculated using the tight-binding method [1].
The 1D and 2D systems are the octonacci chain and the labyrinth tiling considered in the previous Demonstration by the author: Labyrinth Tiling from Quasiperiodic Octonacci Chains. You can choose the DOS or the IDOS of a 1D or 2D system to see the differences between the two systems.
By lowering the value of the ratio you can drive the system from periodic order (), in which the bond lengths in the octonacci systems are the same everywhere, to aperiodic order, in which there are both short and long bonds. At the same time, the systems experience a transition from a metallic to an insulating state. You can see this from the appearance of gaps in the electronic level spectra and DOS profile. In the IDOS plots, note the presence of plateaus in the profile, since there are no electronic levels to be counted in those energy ranges (see snapshot 6).

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Snapshot 1: electronic density of states for the 1D system with periodic order ()
Snapshot 2: electronic density of states for the 2D system with periodic order ()
Snapshot 3: electronic density of states for the 2D system with aperiodic order ()
Snapshot 4: integrated electronic density of states for the 1D system with periodic order ()
Snapshot 5: integrated electronic density of states for the 2D system with periodic order ()
Snapshot 6: integrated electronic density of states for the 2D system with aperiodic order ()
Reference
[1] U. Grimm and M. Schreiber, "Energy Spectra and Eigenstates of Quasiperiodic Tight-Binding Hamiltonians," in Quasicrystals: Structure and Physical Properties (H.-R. Trebin, ed.), Weinheim, Germany: Wiley-VCH, 2003 pp. 210–235. arxiv.org/abs/cond-mat/0212140.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+