10981

# Ellipse and Friends

The table shows the equations in rectangular coordinates of an ellipse in standard position, as well as its two associated hyperbolas and their asymptotes.
The asymptotes are a limiting case of both kinds of hyperbolas. For example, if , then the up-down hyperbola has equation , so that (, and one or the other (or both) , , whose graphs are two straight lines.
The lemniscate is included for two reasons:
The lemniscate has a property similar to the ellipse. Let Q and R be two points, the foci. For a point P on the ellipse, |PQ| + |PR| = , a constant. For a point P on the lemniscate, |PQ| × |PR| = , a constant.
Also, the arc lengths (partial or full perimeters) of the ellipse and the lemniscate are related. The arc length of the ellipse is calculated using an incomplete elliptic integral of the second kind, while the arc length of the lemniscate is given by an elliptic integral of the first kind.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Curriculum Standards

US Common Core State Standards, Mathematics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.