# Expected Dynamics of an Intra-Population Imitation Model for Inter-Population 2x2 Symmetric Games

Consider two distinct populations with the same number of individuals . At each iteration (of time length ), all individuals are randomly matched in pairs made up of one individual from each population to play a symmetric 2×2 game. The two possible actions (or pure strategies) in the game are labeled and . Thus, each individual (regardless of the population to which it belongs) is either an -strategist or a -strategist. The payoffs of the game are , , , and (parameters), where, for instance, denotes the payoff obtained by an -strategist when he plays with a -strategist.
At the end of each iteration, after all individuals have played the game, one randomly selected player from each population revises her strategy— or —according to the following rule: "I look at another (randomly selected) individual in my population; if and only if she got a payoff higher than mine, I adopt her strategy". Thus, the game is played between individuals of different populations, but imitation takes place within each population.
The figure shows a simulation of the proportion of -strategists in each population (in white), its expected dynamics (in dashed red), and the phase plane of the expected dynamics (mean field) in the background.

### DETAILS

Reference
[1] S. S. Izquierdo and L. R. Izquierdo, "Stochastic Approximation to Understand Simple Simulation Models," Journal of Statistical Physics, Dec 2012. dx.doi.org/10.1007/s10955-012-0654-z

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.