# Mimicking the Kuramoto-Sivashinsky Equation Using Cellular Automaton

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

The Kuramoto–Sivashinsky system arises in the description of the stability of flame fronts, reaction-diffusion systems, and many other physical settings. It is a simple nonlinear PDE that exhibits chaotic behavior in time and space. The equation was introduced as a model of instabilities on interfaces and flame fronts by Sivashinsky and as a model of phase turbulence in chemical oscillations by Kuramoto. The equation in 2D is given as

[more]
Contributed by: Srabasti Dutta and Jan Baetens (August 2011)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

The code was part of a project for the NKS Summer School 2011.

Reference

[1] T. C. Chan, H. F. Chau, and K.S. Cheng, "A Cellular Automaton for Diffusive and Dissipative System," http://www.ncbi.nlm.nih.gov/pubmed/9962983.

## Permanent Citation