10854

Multiple States in an Isothermal Continuous Stirred-Tank Reactor

An irreversible reaction is carried out in an isothermal, continuous stirred-tank reactor (CSTR). The green curve in the "rate vs. concentration" plot shows the non-linear dependence of the reaction rate (). The blue line is the CSTR mass balance, and the intersections of the green curve and the blue line are the steady-state solutions to the mass balance. When three solutions are obtained, only two are stable. Changing the residence time with the slider changes the steady-state solutions, and at high and low residence times, only one solution exists. The "concentration vs. time" and "rate vs. time" plots show how the concentration and rate approach steady state when the initial reactant concentration in the reactor, which can be changed with the slider, is not the steady-state concentration. When the reactor has three steady-state solutions, if the initial reactant concentration is above the concentration for the middle steady state, then the reactant concentration in the reactor approaches the higher steady-state reactant concentration. Otherwise, it approaches the lower steady-state reactant concentration. The feed concentration to the reactor is 6.0 mol/L.
  • Contributed by: Rachael L. Baumann
  • Additional contributions by: John L. Falconer and Nick Bongiardina
  • (University of Colorado Boulder, Department of Chemical and Biological Engineering)

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Rate equations:
τ = ,
,
,
,
where is residence time (min), is reactor volume (L), is the volumetric flow rate (L/min), is reaction rate (mol/[L min]), is the steady-state rate (mol/[L min]), is the transient rate expression (mol/[L min]), is the concentration of reactant (mol/L), and and are the feed and steady-state concentrations of reactant (mol/L).
Mole balance:
,
,
where is the initial concentration of in the reactor (mol/L).
The screencast video at [1] shows how to use this Demonstration.
Reference
[1] Multiple States in an Isothermal Continuous Stirred-Tank Reactor. www.colorado.edu/learncheme/kinetics/MultipleStatesIsothermalCSTR.html.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2016 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+