9458

Numerical Methods for Differential Equations

This Demonstration shows the exact and the numerical solutions using a variety of simple numerical methods for ordinary differential equations. Use the sliders to vary the initial value or to change the number of steps or the method.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The Demonstration shows various methods for ODEs:
* Euler's method is the simplest method for the numerical solution of an ordinary differential equation . Starting from an initial point , ) and dividing the interval [, ] that is under consideration into steps results in a step size ; the solution value at point is recursively computed using , .
* Implicit Euler method
* Heun's method
* classical Runge-Kutta method of order 4
The last right-hand side given belongs to a stiff equation, such that the behavior of the method for this type of equation can be studied. See M. Heath, Scientific Computing: An Introductory Survey, New York: McGraw-Hill, 2002.
Note that Mathematica provides all of the methods outlined here and many
others as part of the NDSolve framework. In contrast to the simple implementations used here, Mathematica uses more advanced methods which are e.g. equipped with error estimation and step size selection strategies as well as a stiffness switching; see Mathematica's advanced documentation for NDSolve.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+