Point Spread and Modulation Transfer Functions for Seidel Aberrations

This Demonstration shows the following: an aberration density plot, and profiles and a density plot of the point spread function, and and profiles of the modulation transfer function. These apply to a wavefront with varying tilt, focus, and fourth-order wavefront aberration coma, astigmatism, and spherical aberration. You can select the coefficients for the different terms making up the aberrated wavefront and vary the angle (orientation) for tilt, coma, and astigmatism.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


This Demonstration details the point spread functions (PSF) and modulation transfer functions (MTF) associated with the Seidel monochromatic aberrations. These were named after L. Seidel, who in 1856 gave explicit formulas for calculating them. The Seidel aberrations are of the fourth degree in the pupil variables and and the field position when expressed as wavefront aberrations, and are of the third degree when expressed as transverse ray aberrations. Because of this, these aberrations are either known as third-order or fourth-order aberrations, depending upon whether transverse ray or wavefront aberrations are being considered. The five Seidel aberrations are coma, astigmatism, spherical aberration, distortion, and field curvature. At a given field position, distortion and field curvature are simply tilt and focus (curvature), respectively. The density plot shows what an interferogram would look like testing an optical system with a given amount of tilt, focus, coma, astigmatism, and spherical aberration.
The PSF, which is given by the square of the absolute value of the Fourier transform of the wavefront, shows what the intensity image of a point source would look like. The axis of the PSF plot shows angular distance in units of the wavelength, , divided by the optical system's pupil diameter, .
The MTF, which is given by the magnitude of the Fourier transform of the point spread transfer function, gives the spatial frequency transfer function of an incoherent optical system. The cutoff frequency is given by , where is the wavelength, and is the -number (or focal ratio) of the optical system given by the focal length divided by the pupil diameter.
[1] C-J. Kim and R. R. Shannon, "Catalog of Zernike Polynomials," in Applied Optics and Optical Engineering, Vol. X (R. R. Shannon and J. C. Wyant, eds.), San Diego: Academic Press, 1987 pp. 193–221.
[2] J. W. Goodman, Introduction to Fourier Optics, 3rd ed., Greenwood Village, CO: Roberts & Company, 2004.
[3] V. N. Mahajan, "Zernike Polynomial and Wavefront Fitting," in Optical Shop Testing (D. Malacara, ed.), 3rd ed., Hoboken, NJ: Wiley, 2007 pp. 498–546.
[4] V. N. Mahajan, Optical Imaging and Aberrations, Part II: Wave Diffraction Optics, Bellingham, WA: SPIE Press, 2001.
[5] J. C. Wyant and K. Creath, "Basic Wavefront Aberration Theory for Optical Metrology," in Applied Optics and Optical Engineering, Vol. XI (R. R. Shannon and J. C. Wyant, eds.), New York: Academic Press, 1992 pp. 11–53.
[6] J. C. Wyant. "webMathematica and LiveGraphics3D." (Feb 12, 2013) wyant.optics.arizona.edu/math.htm.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+