10182

# The Area of a Square in a Square

Given a square with side length and parallel lines with slopes and perpendicular lines with slopes , find the area of the shaded square. Also find the ratio that makes the area of the inner square equal to 50% of the outer square.

### DETAILS

The problem can be solved in many ways. The solution illustrated here is visual. It is done in three steps:
Step 1:
The area of the parallelogram = area of square – area of two red triangles = .
Step 2:
Cut the trapezoidal piece from the bottom of the parallelogram and attach it to the top. The parallelogram becomes a rectangle with its base on the base of the inner square. The length of the parallelogram is (according to the Pythagorean theorem) . That is the length of the shaded rectangle, and its width is to the length of the side of the inner square, .
The area of the shaded rectangle = base × height = = the area of the parallelogram.
Therefore: , and so .
Step 3:
The required area of the inner square is

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Curriculum Standards

US Common Core State Standards, Mathematics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.