10182

# The Logistic Difference Equation

The logistic difference equation (or logistic map) , a nonlinear first-order recurrence relation, is a time-discrete analogue of the logistic differential equation, . Like its continuous counterpart, it can be used to model the growth or decay of a process, population, or financial instrument.
Depending on the value of the constant , the solution of the difference equation can approach an equilibrium, move periodically through some cycle of values, or behave in a chaotic, unpredictable way.
A visualization of solutions to the logistic difference equation can be obtained using what can be called a "stairstep diagram." A green line intersects back and forth between the graphs of and , beginning at the point . Every intersection of the green line and the red parabola represents a value of . It is easy to see if the solution converges to a single point, oscillates in "square-like" fashion, or is completely unpredictable.

### DETAILS

The equilibrium values for determine how or whether the long-term activity of a solution is predictable. If and , then , and the equilibrium solutions are or . Further investigation can be done to show that if , then is an asymptotically stable value. For , solutions converge instead to . For , solutions do not converge to a fixed point, except when exactly for some , in which case for all .
Snapshot 1: the solution converges to a single value
Snapshot 3: where , the solution oscillates with period 2 (a "two-cycle")
For larger values of , the long-term activity is highly chaotic, though there may be certain values of with oscillations of period 4, 8, 16, 32, … . In this chaotic region (), there is a high sensitivity to the value of . Even varying a small amount changes most terms drastically; the solution becomes unpredictable.
Snapshot 5: a solution that is chaotic and ultimately unpredictable; it can, however, be modeled as a simpler, three-cycle approximation
Snapshots 2, 4, and 6: the stairstep diagrams of snapshots 1, 3, and 5, respectively

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.