Trisecting an Angle Using a Lemniscate

The angle to trisect, say α, is between the longer leg of the carpenter's square (the brown "L" shape) and the polar axis . Translate the carpenter's square so that it touches the curve at the point . The angle between the radius vector and the polar axis is one-third of the given angle .
For any curve in polar coordinates, the tangent of the angle between the tangent and radial line (the angle between vectors and ) at the point is . The lemniscate has the polar equation , and the derivative with respect to is , so . So . Since is obtuse, .
So , and the angle between the tangent and the normal to the radius vector is . But this angle is equal to the angle between the larger leg of the carpenter's square and the radius vector , because these angles have orthogonal legs. So , .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students. »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+