9478

Wave Functions of Identical Particles

Quantum mechanical probability density for two particles in a 1D well with infinite walls.

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

In classical statistical mechanics, identical particles are considered indistinguishable from each other (the Boltzmann-Gibbs case). Quantum mechanically, an elementary particle (meaning an irreducible finite-dimensional representation of the Poincaré group) is either a boson or a fermion, according to whether its spin (the Casimir operator of the Poincaré group) is an integer or a half-integer. Bosons and fermions cannot mix (superselection rule); wave functions representing identical bosons [fermions] must be fully symmetric [antisymmetric]. These symmetry requirements make an imprint on the probability distributions of particle groups. Statistically, bosons tend to be bunched together and fermions tend to keep away from each other, forming correlation holes. This Demonstration shows the two-particle probability distributions for the simplest possible case--particles in a square well.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+