9867

Solution of the First Underwood Equation Formulated as a Generalized Eigenvalue Problem

The solution to the familiar eigenvalue problem is routinely taught in undergraduate linear algebra courses, but it is rare that the generalized eigenproblem is discussed, often because of a lack of suitable physical examples where such problems arise. In this Demonstration we show how a familiar distillation problem in undergraduate chemical engineering can be reformulated as a generalized eigenvalue problem to find the roots of an -order polynomial.
Consider a mixture of six hydrocarbons (5 mole % , 10 mole % , 15 mole % , 30 mole % , 30 mole % , and 10 mole % ). Assume that this mixture is ideal, and that the constant relative volatilities of the components , , , , , and are equal to 11.5198, 4.3934, 2.5522, 2.0836, 1.1641, and 1.0000. All relative volatilities are computed with taken as a reference component. This mixture is fed to a distillation column with one overhead stream and one bottom stream. The Fenske–Underwood–Gilliland procedure is a well-known shortcut for estimating the number of theoretical equilibrium trays in the column, assuming a constant molar overflow. The shortcut method is often used as a reference step before undertaking a more rigorous analysis.
The first and second Underwood equations, given by equations (1) and (2), have to be solved in order to evaluate the minimum reflux ratio.
(1)
(2)
Once the values for equation (1) are found, then is determined using equation (2). The difficulty arises in a distillation problem where non-key components are distributing. Then you have to find all the roots of the function . This equation can be rewritten as the polynomial
(3),
which for has distinct real roots. For , is a root, together with real roots, all of which can be found using Mathematica's built-in function NSolve.
It has recently been suggested [1] that the roots of can also be obtained by finding the eigenvalues of a generalized eigenvalue problem (): , where the eigenvalues are given by
and where
, , , , , and .
Because has rank , there are also infinite eigenvalues. The solution of such a problem is readily accomplished using Mathematica's built-in function Eigensystem.
The Demonstration plots in blue and indicates all roots by colored dots. You can set the value of the feed quality to a value between 0 and 1. The numerical values of the finite eigenvalues found are identical to those found using NSolve.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

References
[1] R. Monroy-Loperena and M. Vacahern, "Roots of the Underwood's Equations in Short-Cut Distillation from a Companion Matrix Eigenvalues," Chemical Engineering Science, 76(1), 2012 pp. 9–13. doi:10.1016/j.ces.2012.03.025.
[2] R. Monroy-Loperena and F. D. Vargas-Villamil, "Determination of the Polynomial Defining Underwood's Equations in Short-Cut Distillation Design," Industrial and Engineering Chemical Research, 40(24), 2001 pp. 5810–5814. doi:10.1021/ie010091o.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+