Single-Phase Rectifier Fed from an Inductive AC Source

This Demonstration shows the current waveform of a single-phase rectifier when fed with a purely inductive sinusoidal voltage source. You can vary the source's short-circuit power through its equivalent series inductance. You can also vary the DC bus voltage to see different load states of the rectifier.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Single-phase rectifier bridges are built into the power supplies of several appliances. They are used to turn the AC power from the mains into DC power, which is typically fed into a capacitor or group of capacitors. A capacitor (or capacitor group) is typically known as the rectifier's DC bus.
The DC voltage available in the DC bus is then used to feed a load via some sort of switching device. For instance, it can be used as the internal supply voltage for any electronic home appliance. In industrial applications, DC voltage can be used to synthesize an AC voltage, as in uninterruptible power supplies (UPS) and also in variable frequency drives, devised to operate AC motors with an AC voltage of adjustable frequency.
The steady-state voltage level in the DC bus, which you can vary in this Demonstration, depends largely on the rectifier load level. At heavy loads, the DC voltage stays low enough to allow large currents through the rectifier bridge; lower rectifier loads imply higher DC voltages and consequently lower currents.
The magnitude of the rectifier current, which is determined by the difference between the AC voltage and the DC bus voltage, is limited by the source's impedance, which you can adjust by varying the inductance.
The waveform of the rectifier current depends mostly on the resistive or reactive nature of the mains source impedance. This Demonstration considers a purely inductive power source.
The source's short-circuit power is varied roughly between 0.1 and 0.3 MVA, depending on the choice of frequency and inductance values.
[1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd. ed., New York: John Wiley & Sons, 2003.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+