11453

# Stability and Critical Angle of a Box

If you tilt a box, one edge of the base of support becomes a pivot point. As long as the center of gravity of the box remains over the base of support, torque due to gravity rotates the object back toward its stable equilibrium position; we say that the object is stable. But if the center of gravity moves outside the base of support, the gravitational torque causes a rotation in the opposite direction. Now the box rolls over; it is unstable. A critical angle is reached when the center of gravity is directly over the pivot point. This is the point of balance, with no net torque. For vehicles, the distance between the tires—the base of support—is called the track width . If the height of the center of gravity is , you can see from the Demonstration that the critical angle is .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.